Comparative Evaluation of Different Local Spices on Hepatic Functions in Male Mice Exposed to Lambda-Cyhalothrin

Adetutu Olubunmi Obulor a* and Eme Efioanwan Orlu a

a Department of Animal and Environmental Biology, Rivers State University, P.M.B-5080, Nkpolu Oroworukwo, Rivers State, Port Harcourt, Nigeria.

Authors’ contributions
This work was carried out in collaboration between both authors. Authors EEO and AOO designed the study. Author AOO carried out the experiment while author EEO supervised the experiment. Author AOO wrote the first draft of the manuscript. Both authors read and approved the final manuscript.

ABSTRACT

Aim: This study was aimed at evaluating the effect of different spices on hepatic function in male mice exposed to lambda-cyhalothrin (LCT).

Experimental design: A completely randomized experimental design using standard methods for analysis.

Place and Duration of Study: This study was carried out in the Animal house, Department of Animal and Environmental Biology of Rivers State University, Nkpolu-Oroworukwo Port Harcourt, Nigeria. GPS 4°47’50”N 6°58’49”E. This study lasted for 35days.

Methodology: Forty-two male mice were randomly selected into six (6) groups A-F (n=7/group). Group B were gavage Cyhalothrin (LCT) alone. Group C, D, and E were gavaged 10mg/kg/bw of LCT and 20mg/kg/bw/day of aqueous extract of Tetrapeura tetraptera, Piper guineense, and Xylopia aethiopicae respectively, while group F received 10mg/kg/bw of LCT together with the combination of the three spices. Vital organs were removed and weighed for organosomatic indices. Blood samples were collected by ocular puncture and analysis for liver biomarkers and antioxidant enzymes carried out. Vital organs were removed and weighed for organosomatic indices.
Histological sections of the liver were mounted on slides, stained with hematoxylin and eosin (H&E). Photomicrographs were generated.

Results: Results show a significant (p=0.05) increase in Alanine aminotransferase (ALT), Aspartate aminotransferase (AST) and Alkaline phosphatase (ALP) concentration in mice exposed to lambda cyhalothrin alone but a significant decrease observed in groups coadministered the spices. Also the level of all enzymatic antioxidants superoxide dismutase (SOD), Catalase (CAT) and glutathione (GSH) considered decreased in group with lambda cyhalothrin (LCT) alone while there was significant (p=0.05) increase in groups coadministered Tetrapleura tetraptera, Piper guineense and Xylopia aethiopica. Liver photomicrograph of animals exposed to lambda cyhalothrin alone shows lymphocyte infiltration in the portal vein while fewer lesions and regenerating hepatocytes were observed in groups coadministered the different local spices. It is concluded therefore that lambda Cyhalothrin induces liver injury and oxidative stress in the exposed mice. All the spices used in this study have significant antioxidant activity against liver injury due to their free radical scavenging potential although the efficacy is highest in combination of spices > Tetrapleura tetraptera > Piper guineense > Xylopia aethiopica. For efficacy, individuals may use the combination of all spices, Tetrapleura tetraptera, Piper guineense and small doses of Xylopia aethiopica singly as an antioxidant supplement to counter the toxic effect of insecticides exposure.

Keywords: Antioxidant; biomarkers; insecticides; oxidative stress; spices.

1. **INTRODUCTION**

The increase in the incidence and prevalence of liver diseases remain a major global health burden irrespective of ethnic group, religion, sex or age. The liver is a vital organ in a living organism because it plays an essential role in metabolism and the excretion of various therapeutic agents and xenobiotics from the body [1,2]. Chronic liver diseases are the fifth leading cause of death in the United Kingdom, accounting for approximately 4.8 percent of deaths among American Indians and Alaska Natives [3,4,5]. According to WHO 2020, liver disease deaths in Nigeria, is about 3.10% of total deaths making Nigeria the second in the world with age adjusted death rate of 64.44 per 100,000 of population [6,7].

There is yet to be a definitive medicinal drug that can completely heal liver ailments. The majority of available therapeutic drugs only aid in the healing or regeneration of liver cells, according to scientific findings [2,8,9,10]. After any cellular harm caused by xenobiotic exposure (toxic chemicals, ethanol, pesticides, drugs etc.), the liver has an amazing regeneration ability. Antioxidant therapies have been found to have an important function in maintaining balance and avoiding diseases caused by an excess of free radicals in the body. Antioxidant therapies serve as free radical scavengers, preventing lipid peroxidation [11]. Spices had played a vital role in the lifestyle of people across the globe. They possess potent medicinal properties such as antimicrobial activity. The use of spice are not limited to flavoring agent but as preservatives. Spices such as turmeric, fenugreek, mustard, ginger, onion and garlic have a wide variety of bio functions and their additive or synergistic actions are likely to protect the human body against a variety of injuries. Traditionally, spices as part of the diets, have holistic effects on human health.

Piper guineense commonly known as African black pepper is a West African tropical plant that belongs to the family *Piperaceae*. In some parts of Nigeria, the seeds and leaves are used in preparation of a popular dish consumed by women after childbirth, to enhance the contraction of uterine and expulsion of placenta and other remains from the womb, treatment of rheumatic pains, weight control, respiratory diseases and correction of female infertility problems while the seeds are used as an aphrodisiac [12-17]. The effect of aqueous extract of *Piper guineense* seeds on some liver enzymes, antioxidant enzymes and some hematological parameters in albino rats has been reported by [18].

Uda (*Xylopia aethiopica*) also known as Guinea pepper has been shown to have antioxidant, laxative and antimicrobial properties [19], antiseptic and insecticidal property [20]. Phytochemical evaluation shows *Xylopia* is rich in flavonoids, alkaloids, flavonoids, tannins, steroids oligosaccharides, tolerable levels of cyanogenic glycosides in Uda seeds, it is used in the treatment of cough, rheumatism, dysentery, malaria, uterine fibroid boils and wounds in most parts of Africa [20,21].
Aidan fruit (*Tetrapleura tetraptera*) has been documented to have flavonoids, phenols, cardiac glycosides, terpenoids, saponins, and phlorotannins, among others, thus exhibiting varying pharmacological effects. It is an essential ingredient in the preparation of pepper soups for mothers after labour to prevent postpartum contraction [22].

Synthetic pyrethroids account for more than 30% of insecticides used worldwide in agricultural, domestic and veterinary applications [23].

Lambda-cyhalothrin (LCT), a synthetic type II pyrethroid insecticide has extensive uses as an agro-pesticide [10, 24,25]. Residues of LCT have been reported in vegetables and fruits [26], milk and blood of dairy cattle meat [27]. Consistent with its lipophilic nature, LCT has been found to accumulate in biological membranes leading to oxidative damage [28]. It was reported that LCT caused oxidative stress by altering antioxidant systems and increasing lipid peroxidation in mammals [24,25, 29]. Accumulated exposure to these insecticides will eventually damage the liver, as it will not be able to filter the toxins out as quickly as they are being absorbed into the body.

Researchers have aimed at finding solutions of insect control in households, Agriculture and the general environment considering the negative effect of endocrine disrupting pesticides especially on non-target organisms due to the fact that the organs of the organism are their first line of attack. Spices such as *P. guineense* (Uziza), *X. aethiopica* and *T. tetrapleura* (Oshorisha) are used globally and they are readily available commercially for domestic and industrial purposes.

However, there is a paucity of scientific information on the efficacy of these spices on liver cells, hence, this study was designed to assess the possible effect of *Piper guineense*, *Tetrapleura tetraptera*, *Xylopia aethiopica*, against lambda-cyhalothrin induced hepatotoxicity in male mice.

2. MATERIALS AND METHODS

2.1 Experimental Location

The study was carried out in the green house of the Department of Animal and Environmental Biology, Rivers State University, Nkpolu Oroworukwo, Port Harcourt, Nigeria. The experiment was conducted from January to March, 2021.

2.2 Experimental Animal and Management

A total of forty-two (42) mice (mean weight 20.57±3.35g) were used for the study. The mice were housed in rubber case under standard condition and acclimatized for one week. All animals were fed with standard rodent pellet and cool clean water *ad libitum*. All experiments were conducted according to the institutional animal care protocols at the Rivers State University, Nigeria and followed approved guidelines for the ethical treatment of the experimental animals.

2.3 Experimental Design and Procedure

Forty-two mice were assigned to six groups (A-F) of seven mice each. Group A was the negative control and so they were not given any treatment, but pellet and clean tap water. Group B was the positive control and receives 10mg/kg/bw/day of lambda cyhalothrin. Group C receives lambda-cyhalothrin and 20mg/kg/bw/day of aqueous extract of *Tetrapleura tetraptera*, Group D receives lambda-cyhalothrin and 20mg/kg/bw/day of aqueous extract of *Piper guineense*. Group E receives lambda-cyhalothrin and 20mg/kg/bw/day of aqueous extract of *Xylopia aethiopica*. Group F receives lambda-cyhalothrin and 20mg/kg/bw/day of aqueous extract of *Tetrapleura tetraptera*, *Xylopia aethiopica* and *Piper guineense*.

All the groups were exposed to their treatment by oral gavage for 35days. The animals were weighed twice a week and the average weight per week recorded in grams (g). Feed was withdrawn from the animals 24hours before the termination of experiment. Blood samples were collected by ocular puncture and placed in plain sample bottles. Thereafter the samples were centrifuged at 3000g for 10minutes kinetic test kits produced by Cypress diagnostics. Alanine aminotransferase (ALT), Aspartate transferase (AST) activities were determined according to the method of Reitman and Frankel [30]. Alkaline phosphatase (ALP) tests were carried out using Beffield and Goldberg’s method. [31]. GSH was determined by the method of Ellman [32].
2.4 Histopathological Analysis of the Liver

Immediately after dissection of each animal, 0.5g of liver was fixed in 10% neutral formalin and sectioned with a digital Rotatory Microtome (AO spencer No. 820) at 5µm. Histological sections mounted on slides was stained with hematoxylin and counter-stained with eosin (H&E). Photomicrographs were generated with a digital microscope Biosphere Miller B with an image processor DN2 – microscope image processing software at x40 magnification.

Data obtained were subjected to one way one-way Analysis of Variance (ANOVA), where significant differences were found, pair-wise comparisons were conducted with Tukey test using SPSS 22 software.

3. RESULTS

The effect of oral coadministration of cyhalothrin and different local spices on male mice is shown in Fig 1a. Aspartate aminotransferase (AST) concentration significantly (P=0.05) increased from 45.21IU/L in group A to 71.26IU/L in the group gavage cyhalothin only. This value decreased to 61.2IU/L in group C, coadministered Tetrapleura tetraptera, 55.01IU/L with Piper guineense, 65.21 and 63.21IU/L in groups E and F respectively. Fig 1b shows a significantly increased value of alkaline aminotransferase (ALT) from 12.02U/L in the control group to 21.03 U/L in group B. There was a steady decrease in values in group C,D and E and further decrease to 12.1IU/L in group F where the combination of all spices were given. Fig. 1c shows the value of Alanine phosphatase to be 20.12U/L in the control. This value doubled in group B and later reduced to 29.31 U/L, 30.12U/L, 27.12U/L and 29.1U/L in groups C, D, E, F respectively.

3.1 Effect of Coadministration of Lambda-Cyhalothrin, and Different Local Spices on the Enzymatic Antioxidant Biomarkers

The level of Glutathione (GSH) in Fig 2a decreased from 1.32±0.02umol/l in group A to 0.95 ±0.03umol/l in group B. There was a significant (P=0.05) increase in the level of GSH in group C to 2.34±0.54umol/l and a decrease to 1.08±0.02umol/l in group D administered Piper guineense. A steady increase was observed in groups E and F administered Xylopia and a combination of the spices to 1.32±0.05umol/l, 1.52±0.03umol/l respectively.

The level of catalase (CAT) in Fig 2b decreased from 5.16± 1.22u/ml in the control group to 4.59±1.08u/ml in group B. A significant increase of 6.28±2.03u/ml was recorded in group C which later decreased slightly to 6.18±1.05u/ml and 5.85±1.01u/ml in groups D and E. There was also a significant increase in the level of CAT to 7.32±2.01u/ml in group F. Moreover, the concentration of Superoxide dismutase (SOD) in Fig 1c also decreased in the control group (group A) from 0.19±0.03u/ml to 0.1 ±0.02u/ml in group B. The value increased to 0.26±0.02u/ml in group C and remained steady in group D until a significant decrease was recorded in group E. The concentration of SOD latter increased significantly to 0.38±0.04u/ml in group F.

![Fig. 1A. Concentration of AST (Aspartate aminotransferase) in mice exposed to lambda cyhalothrin and different local spices](image)
3.2 Histopathological Evaluation of the Liver

Histological examination of the hematoxylin & eosin sections of the liver of the experimental animals in control group reveals normal liver epithelium with full complement of Hepatocytes. Liver epithelium of mice exposed to lambda cyhalothrin alone shows infiltration of erythrocyte and increased mitotic activity as the hepatocytes spirals into division to replace degenerated cells. Group C animals exposed to...
lambda cyhalothrin and co-administered *Tetrapleura tetraptera* (Fig 3c) reveals the hepatocytes undergoing regeneration. Liver epithelium from animals exposed to lambda cyhalothrin with *Piper guineense* (group 3d) and *Xylopia aethiopica* (group 3e) exhibited fewer lesion and a regenerating, busy epithelium which is more pronounced in Fig 3e. Fig 3f shows liver epithelium with fully regenerated hepatocytes as observed in the control.

Fig. 2b. Effect of lambda cyhalothrin and different local spices on catalase level in mice

Fig. 2c. Effect of lambda cyhalothrin and different local spices on Superoxide dismutase level in mice

Fig. 3a. Liver micrograph of the control animals

Fig. 3b. Liver epithelium of animals exposed to LCT alone
4. DISCUSSION

Liver is the first organ to be impacted by foreign compounds that come through portal circulation. These foreign compounds are predominantly bio-transformed in the liver by the action of metabolizing enzymes including microsomal enzymes, aminotransferases and oxygenase. Earlier investigations reveal that pesticides generate free radicals which have been implicated in the induction of liver lesions in experimental animals exposed to cypermethrin [2], deltamethrin [9], dichlorovos [33,34], as well as induction of metabolite-related disorders. Antioxidant enzymes can protect cellular compounds against damage induced by free radicals. SOD, CAT and GPx are important antioxidant enzymes. The SOD decomposes superoxide radicals and produce H$_2$O$_2$. H$_2$O$_2$ is subsequently removed to water by CAT in the peroxisomes, or by GPx oxidizing GSH in the cytosol [33,34,35]. So the activities of these enzymes have been used to assess oxidative stress in cells. Glutathione is a crucial component of the antioxidant defense.
mechanism and it functions as a direct reactive free-radical scavenger. The decreased level of renal GSH in lambda cyhalothrin- treated rats of the present study may be due to its enhanced utilization during detoxification of lambda cyhalothrin.

The elevated levels of ALT, AST and ALP as well as the reduction in GSH, CAT, and SOD level in the group administered lambda cyhalothrin alone is characteristic of impaired liver function reflected as an initial elevation of the biomarker enzyme levels. The level of all enzymatic antioxidants considered decreased in group B with cyhalothrin alone suggesting that Cyhalothrin induced oxidative stress in the male mice. The significant increase in SOD, Catalase and GSH in groups coadministered Tetrapleura tetraptera, Piper guineense and Xylopia aethiopica shows the protective property of the spices against liver injury. Although it appears that the level of protection conferred on the liver is lower in group E with X. aethiopica than those in groups C,D, and F where Tetrapleura tetraptera, Piper guineense and combination of the spices were administered (Fig 2a-f).

Previous reports indicate that during liver damage, there was an observed decreased in antioxidant defenses in the liver exposed to Cypermethrin and Cyhalothrin [2, 10]. [35] however, reported that the level of enzymatic antioxidants SOD, Catalase, GSH showed significant reduction in rat liver while administration of Citrus limon fruit extract markedly ameliorated the toxicity of Carbofuraran. [11] also reported the protective role of the methanol extract of Piper guineense seeds against CCl4 induced hepatotoxicity. CCl4 induced increased activities of serum hepatic marker enzymes associated with increased levels of lipid peroxidation and decreased enzymatic antioxidant.

The liver micrographs in this study reflect the remarkable capacity of the liver to regenerate following injuries by undergoing rapid mitotic division as observed in the epithelium exposed to lambda cyhalothrin. This injury to the liver was indicated by the significant elevation of all liver biomarkers examined in this study. The central portal vein was infiltrated with lymphocytes in group B. The increase in the number of hepatocytes captured in liver epithelium of animals exposed to the different spices (Fig 3c-3f) is indicative of rapid regeneration going on with coadministration and the antioxidant capability of the various spices. However, fewer lesion were still observed in the group coadministered Xylopia aethiopica. [36] reported substantive evidence of antioxidant and hepatoprotective property of Xylopia aethiopica leaves in animal models while [37] reported that the administration of Xylopia aethiopica leaves can induce hepatic cell damage resulting from the elevation of liver enzymes because of the present of xypolic acid in its constituent. Also histopathological examination of liver reveals a mild to acute hepatitis in Xylopia aethiopica leaves treated rats suggesting that aqueous extract of Xylopia aethiopica may possess some toxic effect on the liver [38]. However, all the spices used in this study have significant antioxidant activity due to their free radical scavenging potential although the efficacy is highest in combination of spices> Tetrapleura tetraptera> Piper guineense > Xylopia aethiopica.

5. CONCLUSION AND RECOMMENDATION

This study concluded that the decreased level of all enzymatic antioxidants considered in group administered cyhalothrin alone suggests that Cyhalothrin induced oxidative stress in the Swiss mice while the significant increase in SOD, Catalase, GSH and rapid hepatocytes regeneration in groups coadministered Tetrapleura tetraptera, Piper guineense and Xylopia aethiopica shows the antioxidant and protective property of the spices against liver injury at varying degrees.

It is recommended that exposure to lambda-Cyhalothrin as an insecticide in homes, offices, and Agricultural settings should be reduced. More so, for efficacy, individuals may use the combination of all spices, Tetrapleura tetraptera, Piper guineense and small doses of Xylopia aethiopica singly as an antioxidant supplement to counter the toxic effect of insecticides exposure.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.
CONSENT

It is not applicable.

ETHICAL APPROVAL

The experiment was conducted according to the institutional animal care protocols at the Rivers State University, Nigeria and followed approved guidelines for the ethical treatment of experimental animals.

ACKNOWLEDGEMENTS

The following people are acknowledged for their various contributions in ensuring the completion of this research. Eteh Favour Graham, Okachi Ngozi and Nwoke kasarachi.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

25. Abdel Aziz KB, Abdel Rahem HM. Lambda, the pyrethroidinsecticide as a mutagenic agent in both somatic and germ cells. J. Am. Sci. 2010;6(12):317-326.

© 2021 Obulor and Orlu; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/81265